

Spectrum for "5G" – where is the problem ?

Jens Zander Scientific Director, Wireless@KTH KTH – The Royal Institute of Technology, Stockholm, Sweden

Outline

- Why do we need 5G ?
 - Transparency & mobile data tsunami
 - Things that communicate & the Internet of Senses

• Who needs more spectrum ?

- The two worlds or are they three ?
- What spectrum should we be looking for ?

Key trend 1: Transparency eats efficiency for breakfast

Why do we have a Data Tsunami? Dominant designs

- Internet access + Cloud based solution = the Dominant Design for all application involving communication – since 2007 also on mobile
- Simple interface IP for all "apps" creates explosive growth works on all platforms
- Inefficient for (almost) all applications: we buy flexibility at the expense of large data volumes data
- Other specific communication technologies (e.g. P2P, Multi-hop) and "one trick ponies" (e.g Broadcast Radio/TV) become marginalized

"IP is the answer - now, what was the question ?"

G Q Maguire

The price tag for transparency – the <u>Mobile</u> Data avalanche (as seen in 2010)

Exponential growth Assumes **zero marginal cost** for access How long can this be sustained ?

Operator dilemma: More for less money

Cellular traffic estimates now more modest

Global mobile traffic (monthly ExaBytes)

Source: Ericsson Mobility Report, Nov 2014

- Market saturation ?
 - Everyone has a smartphone?
- Volume based charging ?
 - "Buckets" instead of "all-you-can-eat"
- Bulk of the traffic off-loaded elsewhere ?
 - WiFi

Key trend 2: Things that communicate & the Internet of Senses

Things that communicate

Internet of Things

- Billions of devices
- Low power
- Low cost
- High reliability
- Low delay

4G not a scalable solutionSIM-cards in every device ?

"The internet of senses" (a.k.a. "The Tactile Internet")

Everything under one roof ? Transparancy vs Efficiency

The IP-access world

- Large volumes of standardized equipment, unified platforms
- Low efficiency, overprovisioning of resources
- Willingness to pay for flexibility

The MTC world

- Large volumes
- Very diverse requirement on power, delay, cost...
- Non-standardized equipment, no unified platforms
- Rational decisions based on savings

How difficult can it be ?

.. and is more spectrum the solution ?

Who needs more spectrum ?

How to increase capacity ?

$$R_{tot} \approx \frac{\eta}{A} N_{BS} W_{sys}$$
 $C_{SYS} = c_{BS} N_{BS} + c_{sp} W_{sys}$

- Increase η , spectral efficiency (signal processing)
 - Close to theoretical limits
- More base stations, N_{BS}
 - Expensive
- More spectrum, W_{SYS}
 - Shortage ?

Solving "all" problems with more spectrum - the "FCC – Spectrum deficit"

WIRELESS DATA GROWTH LEADS TO SPECTRUM DEFICIT

Key assumptions

Reasonable extrapolation of

- current deployment strategies (=moderate increase in base stations)
- transmission technologies.

15

How to lower the cost:

"HET NET"s – deploy according to demand

HET NETs - The Light Analogy

Outdoor – Wide Area

Indoor –
 Short Range

A World Divided – business aspects

The coverage world

Public operators

Access any-time, anywhere "Insurance" – guaranteed access Monthly fee

Power/Site/Backhaul Exclusive spectrum licensing

The capacity world

Facility owners

Sanitary requirement / no charge User experience – high data rates

Ultra dense deployment – Interference (Low power, no site cost, existing backhaul)

Where is the "new" spectrum ?

Spectrum options

	Exclusive <6 GHz	Unlicensed < 6 GHz	Secondary <10 GHz	Exclusive > 10 GHz
Availability	Very Low	Moderate	Good (>1 GHz) for <u>indoor use</u>	Very good
Advantages	 Guaranteed QoS Long-term investments 	 Spectrum available Low cost equipment/deploy ment 	 Spectrum available Low cost equipment/deploy ment 	Very high capacity Low interference
Disadvantages	High deployment cost	 No QoS guarantees Low availability 	 Limited QoS guarantees Regulatory uncertainty 	LOS propagation, Dedicated Deployment

Plenty of spectrum for short range indoor - in total close to 1 GHz for wireless access

Spectrum sharing ?

Criteria for successful (secondary) sharing

Different usage patterns

• If primary and secondary systems compete for the same frequency in the same time & space, this will be a competition the secondary will loose.

(Detailed) Knowledge about the primary system behavior

- where are the primary transmitters, when and on which frequencies will they transmit..
- where are the primary receivers and what interference will they tolerate ?

Inefficient spectrum utilization of the primary system spectrum

• e.g. the efficiency of the primary system is limited by legacy technology

Co-channel & Adjacent channel interference

Lei Shi, "Efficient Spectrum Utilization of UHF Broadcast Band" Ph.D. Thesis, KTH June 2014

The Commercial Sweetspot of spectrum use

Short range/indoor high capacity systems

Success due to physics - not due to smart regulation or "cognitive" technology

Example: ATC radar spectrum shared indoor

Microwave link – Indoor sharing scenario

Key Trends in spectrum sharing

Today	Tomorrow
Transmitter specification	Receiver specification
Interference Limits	"Pain Sharing
Secondary access	Sharing / Co-primary

Where are we heading - spectrumwise?

Wide-Area outdoor

- Large, long-term infrastructure . investments (>> spectrum cost) Vertical / Horizontal sharing? Exclusive - LSS - Open Access ?
- Low frequencies (<3 GHz) ٠
- Wide coverage \rightarrow interference ٠ with other services

Exclusive licensing

Mobile short range, indoor

- Low/moderate investment .
- Moderate frequencies (3-30 GHz) .
- Indoor Short range → limited • interference with other services

Millimeter-Wave, short range, indoor

- Low investment .
- High frequencies (>30 GHz)
- Very short range \rightarrow very limited interference with other services

Open Access

wireless

Where are we heading - spectrumwise?

Wide area access

Spectrum needed to lower infrastructure cost Block-licensed spectrum to match long-term RF-specific investment (<3 GHz) Repurposing of UHF from TV -> IP access

• Digital dividends 800, 700, 600 MHz etc Millimeter-waves to get exclusive spectrum?

Short range access

Plenty of potential spectrum <10 GHz Higher frequencies (>3 GHz) for high capacity (lower interference)

Local & temporal spectrum regimes (National Block-licensing inefficient)

Unlicensed, Secondary, LSA, "Instant licensing"

Infrastructure vs Spectrum Sharing?

Some conclusions

- Wireless Cloud Access the dominant design of future services !?
- Indoor ultra-dense deployment a completely different ballgame
 - Systems constraints
 - Spectrum sharing feasible
- Spectrum not really a fundamental limiting factor for capacity
 - Matching to infrastructure investment life cycle

