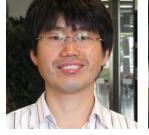


Spectrum Challenges for Wireless Indoor Networks beyond the "Ultra-Dense Barrier"

Jens Zander Scientific Director, Wireless@KTH KTH – Royal Institute of Technology Stockholm, Sweden

Outline

- The "1000X" challenge
 - Can we reach 1000x capacity = **1 Gbit/s/m**²?
- Are Extremely Dense (Indoor) Networks the solution?
 - Some design issues
- Is Spectrum shortage the key challenge ?
 - Should we share spectrum or not ?



Some acknowledgements

Seong-Lyun Kim Yonsei Univ

Ki Won Sung KTH

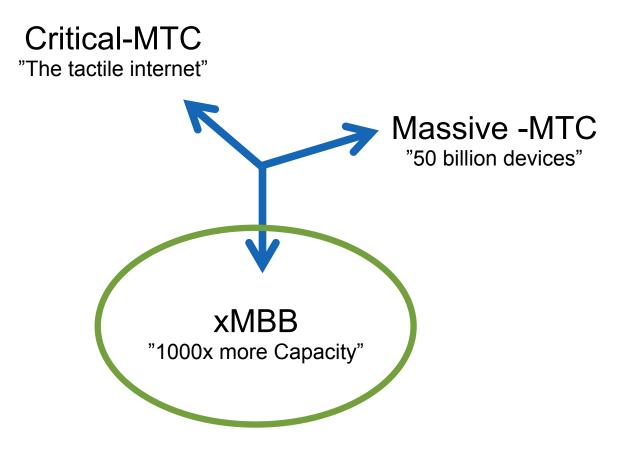
Petri Mähönen RWTH Aachen

Du Ho Kang KTH/Ericsson

Evanny Obregon KTH/Ericsson

Miurel Tercero KTH/Ericsson

Jihong Park Yonsei/Oulo Univ


- 1. Zander, J, **"Beyond the Ultra-Dense Barrier: Paradigm Shifts on the Road Beyond 1000x Wireless Capacity**", *IEEE Wireless Communication Magazine*, June 2017
- 2. J. Zander, P. Mähönen, "Riding the Data Tsunami in the Cloud Myths and Challenges in Future Wireless Access", IEEE Communications Magazine, March 2013

The 5G Context

The three design dimensions

KEYNOTE - CROWCOM 2018

Sept 18, 2018, GENT, Belgium

wireless @kth

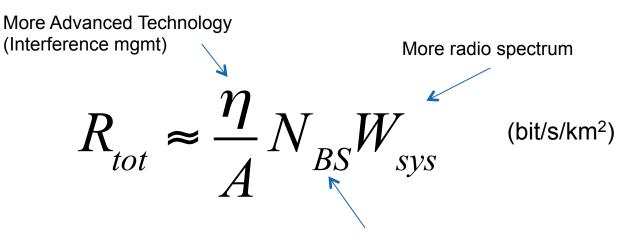
How do you increase the data rate (coverage) in a (traditional) Cellular Network ??

More power, Fewer walls, advanced technology

 $R_{user} \approx W_{SYS} \log(1 + c \eta N_{BS}^{\alpha})$ bit/s

More radio spectrum

More Base stations


KEYNOTE - CROWCOM 2018

Sept 18, 2018, GENT, Belgium

How do you increase the capacity in Cellular Networks ??

More Base stations

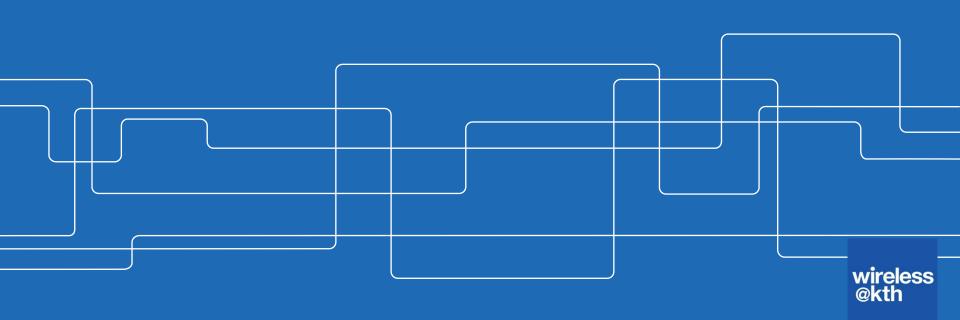
Sept 18, 2018, GENT, Belgium

What can be done with today's technology?

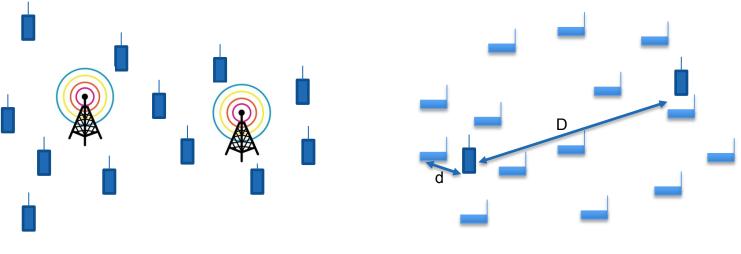
	Intersite	Spectrum	No BS	Cap/Site	Area cap
Macro	300 m	500 MHz	10 /km ²	1Gb/s	10 Gb/s/km ² (outdoor)
WiFi - today	30m	500 MHz	1000/km ²	1 Gb/s	1 Tb/s/km ²
WiFi –ideal*	1/room	2 GHz	50K/km ²	4 Gb/s	200 Tb/s/km ²

Simple area-based calculation – outdoor/indoor wall penetration not included * 1 AP/room , perfect wall attenuation

1000x more than today = 1 Gbit/s/ m^2


(1000 Tb/s/km²)

KTH ROYAL INSTITUTE OF TECHNOLOGY



What are Extremely Dense Networks?

What is an Extremely dense system

Cellular System $\lambda \downarrow AP << \lambda \downarrow T$

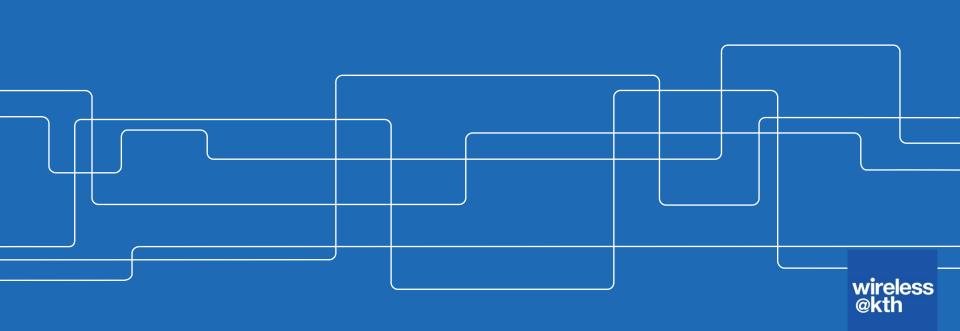
Extremely-dense access system $\lambda \downarrow AP >> \lambda \downarrow T$

- Extremely Dense Network = (Many) More Access Points than Terminals (the "ultra-dense barrier")
- Area capacities > 1 Gbit/s/sqm

Area capacity and Power

Area capacity
$$\propto \begin{cases} \lambda_U W_{SYS} \log \left(1 + c \left(\frac{\lambda_{AP}}{\lambda_U} \right)^{\alpha/2} \right) & \lambda_{AP} \leq \lambda_{AP}^* (R_{\max}) \\ R_{\max} \lambda_U & \lambda_{AP} > \lambda_{AP}^* (R_{\max}) \end{cases}$$

Power/User $= \frac{c_1}{\lambda_{AP}^{\alpha/2}} \left(+ c_2 \frac{\lambda_{AP}}{\lambda_U} \right)$

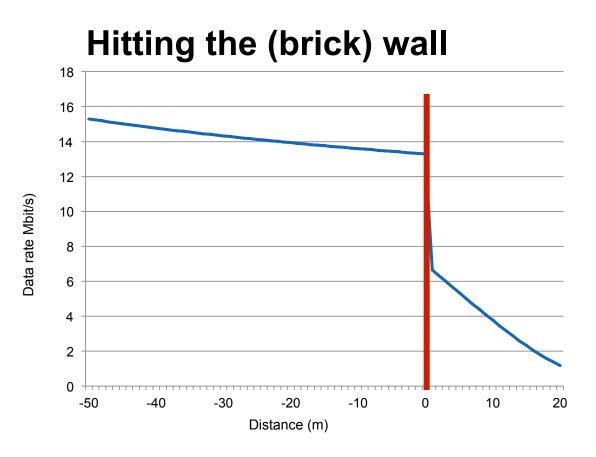

Conventional frequency reuse, Stochastic geometry model

KTH ROYAL INSTITUTE OF TECHNOLOGY

What makes indoor system special ?

Design Characteristics – a paradigm shift

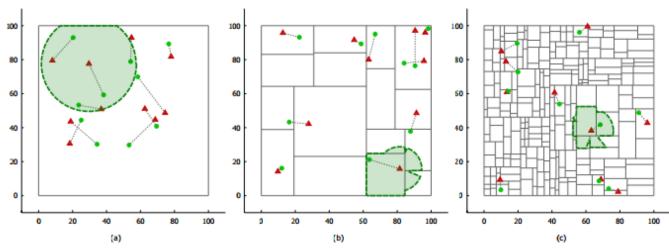
Characteristic	Cellular, Wide-area paradigm	High-Density, Short Range	
Propagation	Distance loss, shadowing, rich multipath	Mostly LOS, Body shadowing	
Interference	Interference sum of many components (averaging)	Extremely varying interference	
Duplexing	plexing Up & Downlink have different characteristics (power) and must be separated		
Engineering limitations Range, Interference, Energy		Interference	
Peak rate limitation set by	Noise & Interference	Equipment (very high SNR)	



Design Characteristics, cont.

Characteristic	Cellular, Wide-area paradigm	High-Density, Short Range
Cost limitations	Sites: Acquisition, Antennas, Equipment, Deployment, Backhaul, Spectrum licenses	Backhaul, Deployment
Active Users/Base station	1-100	0,01 - 1
Available radio bandwidth	< 0,5 GHz Licensed	> 5 GHz Secondary sharing
Business model	Subscription based service Per month or per MB charging	Free to all tenants and visitors in building (similar to A/C, lighting, running warm water)
Design paradigm	Industrial grade, Centralized control, "mandatory complexity"	Consumer grade, Distributed control, plug-and-play
Maintenance model	Single point of failure - 24/7 monitoring	Graceful degradation – replace when time available

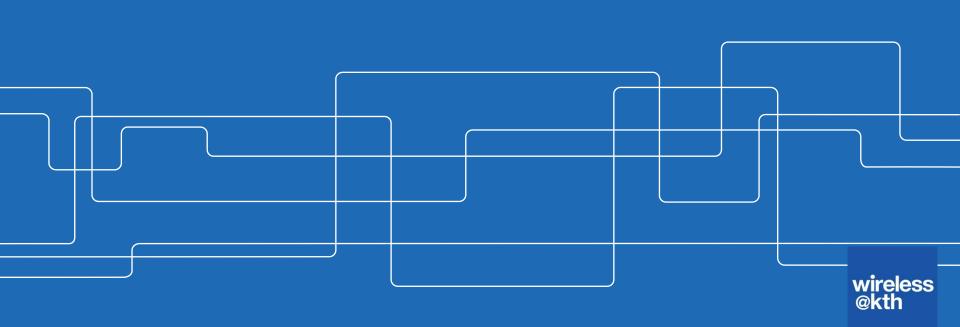
- "Wireless Friendly" buildings:metalized windows & reinforced concrete
- 20 dB loss (at window) 30- 40 dB loss 10-20m into building



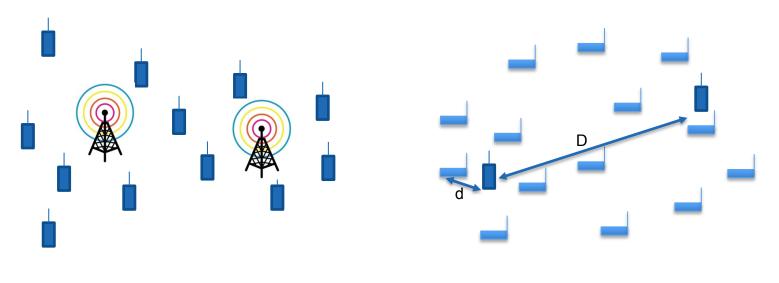
Modelling issues

SPPP-models conveniant – mathematically – but do they capture essential features of dense indoor deployments ?

- Strong interference coupling between BS
- Walls simple deployment strategies take these into account


Alternative approach - stochastic room/wall models

Özyagci, Sung, Zander, "Effect of propagation environment on area throughput of dense WLAN deployments", Globecom BWA WS, 2013



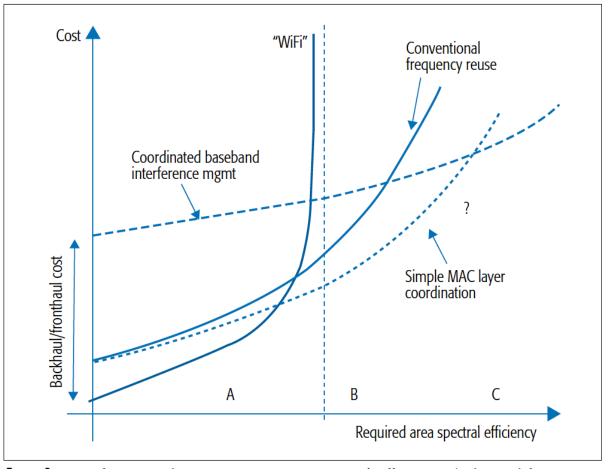
Indoor EDN:s design issues

What is an Extremely dense system

- Extremely Dense Network = (Many) More Access Points than Terminals (the "ultra-dense barrier")
- Area capacities > 1 Gbit/s/sqm

 $\lambda_{AP} >> \lambda_{T}$

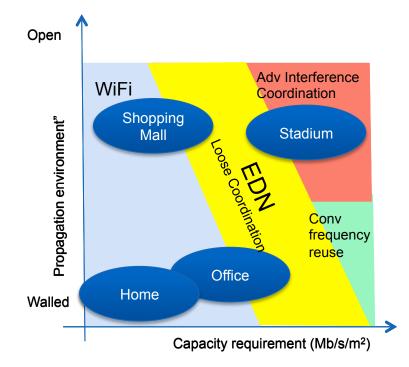
Area capacity and Power


Area capacity
$$\propto \begin{cases} \lambda_U W_{SYS} \log \left(1 + c \left(\frac{\lambda_{AP}}{\lambda_U} \right)^{\alpha/2} \right) & \lambda_{AP} \leq \lambda_{AP}^* (R_{\max}) \\ R_{\max} \lambda_U & \lambda_{AP} > \lambda_{AP}^* (R_{\max}) \end{cases}$$

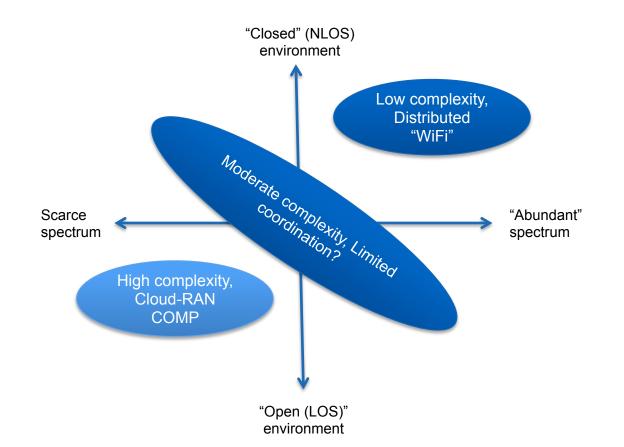
Power/User $= \frac{c_1}{\lambda_{AP}^{\alpha/2}} \left(+ c_2 \frac{\lambda_{AP}}{\lambda_U} \right)$

Conventional frequency reuse, Stochastic geometry model

Design options for high capacity systems



Adapted from: D. H. Kang, K. W. Sung, and J. Zander, "High Capacity Indoor and Hotspot Wireless Systems in Shared Spectrum: A Techno-Economic Analysis," IEEE Commun. Mag., Dec. 2013.


Impact of propagation environment

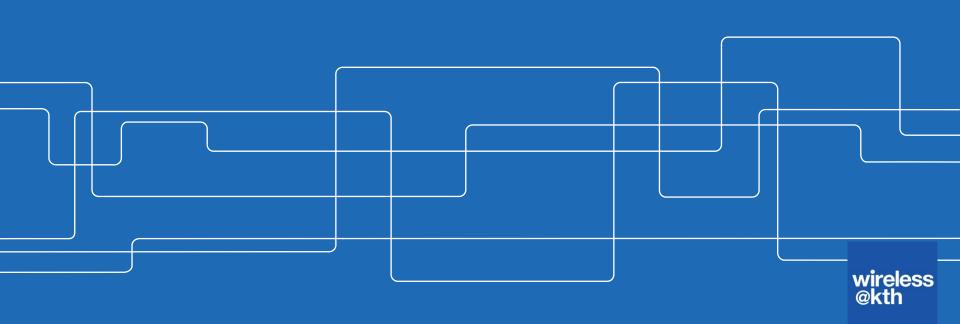
KEYNOTE - CROWCOM 2018

Moderate (MAC-layer) Coordination -Candidate Technologies

Requirement:

- Can use existing Ethernet backhaul
- ms delay, Signaling rate << Payload rate

Candidates:


- Cognitive radio:
 - Distributed Sensing: CSMA works but has limitations
- Coordinated beam steering
 - Works at higher frequencies (mm-Waves)
 - Beam steering at packet level (ms-level)
 - Moderate backhaul requirement
 - Example: IEEE 802.11ad (WiGig)

KTH ROYAL INSTITUTE OF TECHNOLOGY

Is there a spectrum shortage ?

Traditional spectrum management

Each applications :

- Has its own technical solution
- Needs "exclusive" spectrum
- \rightarrow
 - Complex regulation
 - Fragmentation of spectrum

Today: A single solution for all needs

- Internet access + Cloud based application seems to be the solution to a vast majority of applications
- A single, simple interface IP for all applications
 inefficient but highly flexible and transparent
- Highly scalable massive growth in applications and usaga
- Convergence to a single infrastructure wireless IP-access is no longer a service – it is the THE platform

"IP is the answer - now, what was the question ?"

G Q Maguire

Where are we heading - spectrumwise?

Wide area access

Spectrum need to lower infrastructure cost Block-licensed spectrum to match long-term RF-specific investment (<3 GHz)

Repurposing of UHF from TV -> IP access

• Digital dividends 800, 700, 600 MHz etc

Short range access

Plenty of potential spectrum <20 GHz Higher frequencies (>3 GHz) for high capacity (lower interference) Local & temporal spectrum regimes (National Block-licensing inefficient) Unlicensed, Secondary, LSA, "Instant

licensing"

Spectrum \rightarrow Infrastructure Sharing!

Spectrum for indoor access

Spectrum range	Sharing scheme	Pros	Cons
<6 GHz	Unlicensed/ Licensed	Good propagation	Limited spectrum availability
6-20 GHz	Secondary sharing	Moderate prop., Large amounts of available spectrum	Sharing with existing services
>20 GHz	Unlicensed/ Licensed	Large amounts of available (exclusive) spectrum	Poor propagation for mobile usage

Coexistence studies

- D H Kang et al, "High Capacity Indoor and Hotspot Wireless Systems in Shared Spectrum: A Techno-Economic Analysis, IEEE Com Mag, Dec 2013
- D H Kang, "Interference Coordination for Low-cost Indoor Wireless Systems in Shared Spectrum", Ph.D. Thesis, KTH 2014.
- E. Semaan et al, "Outdoor-to-Indoor Coverage in High Frequency Bands", IEEE Globecom Workshop, 2014.
- M Tercero et al, "Coexistence between 5G and Fixed Services", IEEE VTC Spring 2016

Some conclusions

- 1000x capacity does not require new technology "only" 10x more (shared) spectrum
- Advanced cellular technology (e.g. beamforming, interference management) lowers spectrum requirement but requires costly new infrastructure
- Two ways forward:
 - Low power indoor spectrum sharing with outdoor services above 6 GHz in modern buildings
 - MAC:s with moderate coordination over existing backhaul

