

When and How to share the Frequency Spectrum - and when not

Jens Zander

Scientific Director, Wireless@KTH KTH – The Royal Institute of Technology, Stockholm, Sweden

Outline

- Why is there a Spectrum shortage (... or is there)?
- Dynamic Spectrum Access ("Cognitive Radio") to the rescue ?
- The (commercial) sweet spot of DSA
- Spectrum vs Infrastructure sharing
- Long-term spectrum policies for regulators (Africa)

wireless@

wireless

Why is there a Spectrum Shortage ... or is there ?

Traditional spectrum management: Fixed allocation (licensing)

wireless@

Low spectrum Occupancy =Available Spectrum ?

Source: L Khalid, A. Anpalagan. "Emerging cognitive radio technology: Principles, challenges and opportunities

Source: RWTH Aachen measurements

Reason for Low occupancy

- Spectrum allocation coupled to infrastructure investments and equipment – with long (economic) life times – not neccessary "bureaucracy"
- Lots of old equipment with poor spectrum efficiency still in use → lots of "white space" needed to protect old receivers

Low occupancy ≠ Availability

wireless@

- Many users require access not high utilization (Military, emergency etc)
- Receivers need to be protected not transmitters
- World wide harmonization in certain bands to bring down equipment cost → "crowding" in certain bands

Low spectrum Occupancy =Available Spectrum ?

Source: L Khalid, A. Anpalagan. "Emerging cognitive radio technology: Principles, challenges and opportunities

Source: RWTH Aachen measurements

Flexible/Dynamic Spectrum Sharing to the rescue ?

Myth 1: Dynamic spectrum sharing is always best

Myth 2: Cognitive Radio is the solution

- Is there spectrum out there to be shared ?
- How should it be done (instead) ?
- Myth 3: Its only a matter of time until we see the commercial success of dynamic spectrum sharing
 - The commercial sweetspot of spectrum sharing
 - When should the spectrum be shared and when not ?

wireless@

Types of Spectrum sharing

Secondary Sharing

A *Primary User* already uses the spectrum and is unaware that new system want's to "borrow" some of the spectrum resources *Example: "TV-White Space"*

wireless@

Co-Primary sharing

Two or more new system share the spectrum aware of each other *Examples: WiFi, Licensed Shared Access*

Secondary Sharing (Cognitive Radio) - Finding the "Spectrum Holes" & Avoiding Interference

Challenges for secondary spectrum access:

How to find reuse opportunities and use them without exceeding tolerable limits

Co-channel interference

Adjacent channel interference Aggregate interference wireless@

Criteria for successful (secondary) sharing

Different usage patterns

 If primary and secondary systems compete for the same frequency in the same time & space, this will be a competition the secondary will loose.

(Detailed) Knowledge about the primary system behavior

- where are the primary transmitters, when and on which frequencies will they transmit..
- where are the primary receivers and what interference will they tolerate ?

- Inefficient spectrum utilization of the primary system spectrum
 - e.g. the efficiency of the primary system is limited by legacy technology

wireless@

wireless

Succesful sharing example: Microwave link – Indoor sharing scenario

Example: ATC radar spectrum shared indoor

wireless@

TV vs Cellular - not very successful

wireless@

Figure 4.25 Total available downlink WSD throughput capacity for mobile link using SE43 rules and with a separation distance of 100 m in Germany and Sweden.

Business aspects of Secondary Spectrum Sharing

Why is "Dynamic Spectrum" not taking off?

QUASAR Key question

wireless

•Is there secondary spectrum out there that lends itself for commercial use ?

- Can it be detected efficiently ?
- Does it scale? Is there enough spectrum of "sufficient quality"?
- What are the applications that can benefit from secondary sharing ?

wireless@

Key technical findings

vireless

- •Plenty of spectrum available but very scenario, time & location specific
- commercial success is where we can live with this
- $\bullet \mbox{Aggregate}$ interference critical for the scalability , i.e. For massive scale use of secondary spectrum
- Both co-channel & and adjacent channel interference has to be considered
- •Classical "Cognitive" sensing is not very effective in most of the scenarios geolocation based techniques are preferable
- Limited knowledge of victim receiver location
- Difficult to assess aggregate interference
- Sensing interesting to improve/calibrate database propagation models

wireless@

wireless@

•Secondary user request "channel" at certain location – Data base grants access & maximum power level

- •"Instant licensing"
- Possibility to control aggregate interference

The Commercial Sweetspot of spectrum use

Short range/indoor high capacity systems

Success due to physics - not due to smart regulation or "cognitive" technology

Spectrum Sharing or Infrastructure Sharing ?

Old wireless paradigm:

- New service → New system → New radios
 → "New" spectrum
- Spectrum shared between multiple "one trick pony" systems

New wireless paradigm:

- New service \rightarrow Same system
 - \rightarrow Same radios/infrastructure \rightarrow "Same spectrum"
- Multipurpose, shared infrastructure
- Example: IP Networking Mobile Broadband (IP) Access

Internet radio vs traditional radio broadcasting

((†))

Infrastructure sharing

Multiple competing parallel infrastructures

Multimode shared infrastructure

- Explicit sharing
- Coopetition

wireless@

Where is Europe heading - spectrumwise?

Wide area access

Spectrum needed to lower infrastructure cost Block-licensed spectrum to match long-term RF-specific investment (<3 GHz) Repurposing of UHF from TV -> IP access

• Digital dividends 800, 700, 600 MHz etc Millimeter-waves to get exclusive spectrum?

Short range access

Plenty of potential spectrum <10 GHz Higher frequencies (>3 GHz) for high capacity (lower interference)

Local & temporal spectrum regimes (National Block-licensing inefficient)

Unlicensed, Secondary, LSA, "Instant licensing"

Spectrum strategies for Regulators

- Efficient long-term use of spectrum
- Which spectrum allocations are more "future proof" than others ?
- Which infrastructures allow for multiple services ?
- Example: TV Broadcasting vs IP access in homes

wireless@

vireless

Some concluding thoughts

- Spectrum allocation is tightly coupled to infrastructure investments – infrastructures with long life-time need long licensing periods
- Dynamic (Secondary) Spectrum is **not** the long term solution to spectrum shortage – there is a commercial sweet spot, but the main benifits are in **providing rapid access for new applications**
- Infrastructure sharing using multipurpose systems may be more efficient in the long run

wireless@

vireless

25

Read more !

wireless.kth.se

johannesbergsummit.com

1. p.

Technology Neutral Spectrum Assignment – a nice

concept but is it realistic ? Ported on September 9, 2011 by Jean Zander

theunwiredpeople.com

Recent Posts

 Technology Neutral Spectrum Assignment – a nice concept but is it realistic ?

> wireless @kth

Chinacom 2011-Some notes

wireless